Experimental and numerical study of anomalous thermocapillary convection in liquid gallium
نویسندگان
چکیده
Thermocapillary Marangoni convection of liquid gallium was studied experimentally and numerically. A specially designed experimental setup ensured an oxide-free surface of the liquid gallium for a very long time. The convective flow at the free surface was found to be directed opposite to both buoyancy-driven and ordinary thermocapillary convection. The anomalous direction of the thermocapillary flow was explained by the presence of a small amount of a surface-active contaminant—lead adsorbed at the free surface. Two different approaches were used to describe the observed phenomenon. First, the flow was treated as a pure thermocapillary convection with a modified dependence of the surface tension on temperature so that to reproduce the measured velocity distribution. Second, a novel physical model was devised for the flow driven by the gradient of the surface tension induced by the temperature dependence of the concentration of the adsorbed layer of contaminant. In contrast to the ordinary thermocapillary convection in low-Prandtl-number liquids, there is a strong coupling between the flow and the driving force in the proposed model resulting in velocity profiles very similar to those observed in the experiment. © 1999 American Institute of Physics. @S1070-6631~99!02811-1#
منابع مشابه
Convection in two-layer systems with an anomalous thermocapillary effect
Recently, it was found that the anomalous thermocapillary effect (the interfacial tension increases with temperature) is typical for various liquid-liquid systems. We consider the combined action of buoyancy and thermocapillary instability mechanisms in systems with an anomalous thermocapillary effect on the interface. The problem is solved in both linear and nonlinear formulations. A special t...
متن کاملNumerical Investigation of an Evaporating Meniscus in a Channel
A detailed numerical model is developed that describes heat and mass transfer from a meniscus to open air. The model accounts for the effects of evaporation at the interface, vapor transport through air, thermocapillary convection, and natural convection in air. Evaporation at the interface is modeled using kinetic theory, while vapor transport in air is computed by solving the complete species...
متن کاملNatural convection solid/liquid phase change in porous media
A combined numerical and experimental study is reported of solid/liquid phase change in porous media with natural convection in the melt region. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. Experiments are performed in a vertical, square enclosure using gallium and glass beads as the fluid and the porous matrix...
متن کاملLinear Oscillatory Cellular Thermocapillary Convection in Liquid Layers
A linear stability analysis is performed on a thermal, stratified liquid layer with a deformable thermocapillary surface. The objective is to investigate the possibility and conditions for existence of oscillatory cellular convection in the linear thermocapillary system. In general, the principle of the exchange of stabilities for the onset of cellular convection in liquid layers with deformabl...
متن کاملNumerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection
The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999